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ASYMPTOTIC BEHAVIOR OF IWASAWA AND
CHOLESKY ITERATIONS

RANDALL R. HOLMES, HUAJUN HUANG, AND TIN-YAU TAM

Abstract. We extend, in the context of a connected real semisim-
ple Lie group, some results on the QR iteration and the Cholesky
iteration of a nonsingular matrix. A group theoretic understanding
of the abstract mechanisms of the iterations is obtained.

1. Introduction

The QR iteration [2, 3, 10, 18] provides one of the most efficient meth-
ods for computing the eigenvalues of a nonsingular matrix X ∈ GLn(C)
with distinct eigenvalue moduli [15, p. 173-180]. The QR iteration of
X is the sequence {Xi}i∈N defined as follows:

X1 := X,

Xi := Ri−1Qi−1, i = 2, 3 . . .

where Xi = QiRi denotes the QR decomposition of the matrix Xi.
Since Xi = Q−1

i−1Xi−1Qi−1, the eigenvalues of each Xi are identical with
those of X. It is known [6, Theorem 2.1, Theorem 5.1], [18] that if
the eigenvalue moduli of X are distinct, then the sequence obtained by
taking the lower triangular parts of the matrices Xi (i ∈ N) converges
to a diagonal matrix with diagonal entries the eigenvalues of X. When
X is real, its complex eigenvalues occur in complex conjugate pairs
and thus the distinct moduli assumption is often not satisfied. If the
eigenvalue moduli of X are distinct except for complex conjugate pairs,
then under some mild conditions [6, Theorem 2.1] the sequence {Xi}
continues to possess a certain convergence behavior, and this is valid if
X is in either of the connected real semisimple Lie groups SLn(C) or
SLn(R) as well.

We extend these statements about the matrix X to an element of a
connected real semisimple Lie group (see Theorems 4.5 and 4.7). Such
a group G has Iwasawa decomposition G = KAN, so each g ∈ G can

2000 Mathematics Subject Classification. Primary 15A42, 22E46

c©0000 (copyright holder)

1



2 R.R. HOLMES, H. HUANG AND T.Y. TAM

be written as g = k(g)a(g)n(g). The Iwasawa iteration {gi}i∈N of g ∈ G
is defined as follows:

g1 := g,

gi := a(gi−1) n(gi−1) k(gi−1), i = 2, 3, . . . .

For G = SLn(C), the Iwasawa decomposition (resp., iteration) is just
the QR decomposition (resp., iteration) if AN is chosen to be the group
of upper triangular matrices with positive diagonal entries. Our con-
vergence results yield the QR iteration convergence statement in this
special case.

Another matrix iteration is the Cholesky iteration. The Cholesky
decomposition theorem asserts that any positive definite matrix Y can
be written Y = R∗R with R a uniquely determined upper triangular
matrix with positive diagonal entries. The Cholesky iteration of a
positive definite matrix Y is the sequence {Yi}i∈N of positive definite
matrices defined as follows:

Y1 := Y,

Yi := Ri−1R
∗
i−1, i = 2, 3, . . . ,

where Yi = R∗
i Ri denotes the Cholesky decomposition of the matrix

Yi. Since Yi = Ri−1Yi−1R
−1
i−1, the eigenvalues of Yi are identical with

those of Y, counting multiplicities. It is known [18] that the Cholesky
iteration of Y converges to a diagonal matrix having diagonal entries
the eigenvalues of Y . We give a Lie group theoretic generalization of
the Cholesky iteration and obtain a corresponding convergence result
(see Theorem 5.2). See [1, Theorem 11.2] and [12] for related results.

The proofs in the literature of the convergence statements for the
QR iteration and the Cholesky iteration are not purely group theo-
retic since they usually make use of the embedding of GLn(C) in Cn×n

to add matrices at some point (see [18] for example). The proofs of
the generalizations of the convergence theorems obtained in this paper
involve purely group theoretic arguments.

2. Four decompositions of G

From now on (unless we say otherwise) G denotes a connected real
semisimple Lie group with Lie algebra g. In this section, we describe
four well-known decompositions of G (or an element of G), namely
the Cartan decomposition, the Iwasawa decomposition, the Bruhat de-
composition, and the complete multiplicative Jordan decomposition.

Let g = k + p be a fixed Cartan decomposition of the semisimple Lie
algebra g [8]. Let K ⊂ G be the connected subgroup corresponding
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to k. Then K is closed and Ad (K) is a maximal compact subgroup of
Ad (G) [4, p. 402]. Set P := exp p. The map

K × P → G, (k, p) 7→ kp

is a diffeomorphism. In particular G = KP and every element g ∈ G
can be uniquely written as

g = kp, k ∈ K, p ∈ P.

This decomposition of G (resp., g) is the (global) Cartan decomposi-
tion. The map Θ : G → G

Θ(kp) = kp−1, k ∈ K, p ∈ P,

is an automorphism of G [8, p. 387]. The map ∗ : G → G defined by

g∗ := Θ(g−1) = pk−1, g ∈ G,

is a diffeomorphism. When G = SLn(C), X∗ is simply the complex
conjugate transpose of X ∈ SLn(C).

Let a ⊂ p be a maximal Abelian subalgebra of p. Then A := exp a
is the analytic subgroup of G corresponding to a. The Weyl group W
of (a, g) is defined as W := M ′/M , where M ′ ⊂ K is the normalizer of
A in K, and M ⊂ K is the centralizer of A in K. This group operates
naturally on a and A and the map exp : a → A is a W -isomorphism.

Let a+ be a (closed) Weyl chamber in a and set A+ := exp a+. The
set a+ corresponds to a choice of positive roots in the (restricted) root
system of g. Let n be the sum of all positive root spaces of g and set
N := exp n. Then G has the Iwasawa decomposition G = KAN [8].
For g ∈ G, we have

g = k(g) a(g) n(g)

where k(g) ∈ K, a(g) ∈ A, n(g) ∈ N are uniquely determined by g.
When G = SLn(C), the Iwasawa decomposition of X ∈ G gives the
QR decomposition of X if we choose AN as the group of upper trian-
gular matrices with positive diagonal elements and put Q = k(g), R =
a(g)n(g). Though the Iwasawa decomposition of g ∈ SLn(R) coincides
with that when g is viewed as element in SLn(C), it is not necessarily
true for any semisimple subgroup of G, e.g., Spn(R), Spn(C) ⊂ SL2n(C)
[16].

For each s ∈ W , we denote by ms ∈ M ′ a representative such that
s = msM . Moreover, for s = 1, we choose the identity of G for ms.
The Bruhat decomposition of G is

(1) G =
⋃

s∈W

N−msMAN,
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a disjoint union [11, p. 117]. Here, N− := exp n− where n− is the
sum of the negative root spaces in g (or, equivalently, N− = mγNm−1

γ ,
with γ the longest element in W ). So for each g ∈ G, there exists a
unique s ∈ W such that g ∈ N−msMAN . It is easy to see that MA
normalizes N and N−, M ′ normalizes M and A, and M centralizes A.

Another common version of the Bruhat decomposition of G is

(2) G =
⋃

s∈W

MANmsMAN

[8, p. 398]. This is equivalent to the preceding one with more flexibility
on the choices of the M and A components. For example, if g ∈
G has the Bruhat decomposition in the form (1): g = n−msman ∈
N−msMAN , then m−1

γ g has the Bruhat decomposition in the form
(2):

m−1
γ g = (m−1

γ n−mγ)(m
−1
γ ms)man

∈ Nmγ−1sMAN ⊂ MANmγ−1sMAN,

and vice versa. For simplicity, the Bruhat decompositions in this article
are always in the form (1).

The last decomposition we discuss is the complete multiplicative Jor-
dan decomposition (CMJD). An element g ∈ G is elliptic if Ad (g) ∈
Aut g is diagonalizable over C with eigenvalues of modulus 1; an ele-
ment g ∈ G is hyperbolic if g = exp X, where X ∈ g is real semisim-
ple, which is to say ad X ∈ End g is diagonalizable over C with all
eigenvalues real; an element g ∈ G is unipotent if g = exp X, where
X ∈ g is nilpotent, which is to say all eigenvalues of ad X ∈ End g are
zero.

Each g ∈ G can be uniquely written as g = ehu, where e is elliptic,
h is hyperbolic, u is unipotent, and the three elements e, h, u com-
mute [9, Proposition 2.1]. This is the complete multiplicative Jordan
decomposition of g. We write

g = e(g) h(g) u(g).

It turns out that h ∈ G is hyperbolic if and only if it is conjugate
to an element of A+; in this case, such an element of A+ is uniquely
determined and we denote it by b(h) [9, Proposition 2.4]. For g ∈ G,
we define

b(g) := b(h(g)) ∈ A+.

3. Regular elements

An element b ∈ A+ is regular if α(log b) > 0 for all positive roots α,
that is, b is in the interior A◦

+ of A+. When G = SLn(C) or SLn(R), the
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CMJD of g ∈ G is given in [4, p. 430-431]. Moreover, b(g) is regular
if and only if g has distinct eigenvalue moduli, which implies that g is
diagonalizable, that is, the unipotent part u(g) = 1. Proposition 3.2 is
an extension of this result in the context of a connected real semisimple
Lie group G. Its proof requires a lemma.

Lemma 3.1. Let b ∈ A+ be a regular element. Then the centralizer
of b in G is ZG(b) = MA.

Proof. Let z ∈ ZG(b) so that b = z−1bz. Let

z = n−msman

be a Bruhat decomposition of z, where n− ∈ N−, s ∈ W , m ∈ M ,
a ∈ A, n ∈ N . Then s−1 · b = b by [7, Corollary 3.6]. So s = 1
since b ∈ A+ is regular and W permutes the Weyl chambers simply
transitively. Thus z = n−man and bn−man = n−manb. Since A
normalizes N−,

N− 3 b−1(n−)−1bn−(3)

= b−1manbn−1a−1m−1

= ma(b−1nbn−1)a−1m−1 ∈ N

because MA normalizes N . Now N− ∩ N = {1}. So bn− = n−b from
(3). Write b = exp X for X ∈ a◦+ (the interior of a+) and n− = exp T
for T ∈ n−. Then

exp[Ad (b)(T )] = b(exp T )b−1 = exp T.

Since the exponential map is a diffeomorphism [8, p. 68, p. 317] of n−

onto N−, Ad (b)(T ) = T . Therefore, ead X(T ) = T , implying [X,T ] =
ad X(T ) = 0. So T = 0 since X ∈ a◦+, and thus n− = 1. Likewise,
n = 1. Therefore, z = ma ∈ MA. ¤

Proposition 3.2. Let g ∈ G such that b(g) ∈ A+ is regular. Then the
unipotent component u(g) in the CMJD of g is the identity and there
is y ∈ G such that yh(g)y−1 = b(g) and ye(g)y−1 ∈ M .

Proof. Let g = ehu be the CMJD of g. There exists y ∈ G such that
b := yhy−1 = b(g). Since yey−1 and yuy−1 commute with b, we have
yey−1, yuy−1 ∈ MA by Lemma 3.1. The elements of M are elliptic
and the elements of A are hyperbolic. Moreover, the elements of M
commute with those of A, so by the uniqueness of CMJD we have
yey−1 ∈ M and yuy−1 = 1. ¤



6 R.R. HOLMES, H. HUANG AND T.Y. TAM

4. Asymptotic behavior of Iwasawa iteration

The present work was largely motivated by the following result from [6,
Theorem 2.1]. Let X ∈ GLn(R) be a matrix such that the eigenvalues of
X have distinct moduli except for the conjugate pairs. It is known that
[5, p. 152] X admits the decomposition X = Y −1DY , with Y ∈ GLn(R)
and

D := diag (λ1Eθ1 , · · · , λmEθm), λ1 > · · · > λm > 0,

θi ∈ [0, π], where

E0 := 1, Eπ := −1, Eθ :=

[
cos θ sin θ
− sin θ cos θ

]
(0 < θ < π).

The matrix Y has a Bruhat decomposition Y = LωU, where L is unit
lower triangular, U is upper triangular, and ω is a permutation matrix
uniquely determined by Y . In the statement of the following theorem,
Xk denotes the kth term of the QR iteration of X.

Theorem 4.1. [6] Let X ∈ GLn(R) be a matrix such that the eigen-
values of X have distinct moduli except for the conjugate pairs. Let
γ = (γ1, · · · , γm) where γi is the size of Eθi

, i = 1, . . . , m. Let [X]γ
be the block form of X corresponding to the partition γ. If Y = LωU
and [ω]γ is block diagonal (for example, if ω is the identity matrix),
then the strictly lower triangular block part of [Xk]γ converges to zero
and the eigenvalues of the i-th diagonal block of [Xk]γ converge to the
eigenvalues of λiEθi

.

This theorem holds in particular with the additional assumption that
X ∈ SLn(R). Theorem 4.5 below generalizes this special case of the
theorem to the case where X is an element of an arbitrary connected
real semisimple Lie group G.

The sequence {Xk} itself need not converge. There are examples in
[6, Section 4] that show this to be the case. The examples in [6, Section
3] nevertheless show that certain patterns arise, some of which can be
explained by Theorem 4.5 below (see Remark 4.6).

The following sequence {gi}i∈N is called the Iwasawa iteration of
g ∈ G:

g1 := g,

gi := a(gi−1)n(gi−1)k(gi−1), i = 2, 3, . . .

Proposition 3.2 shows that g ∈ G has regular b(g) if and only if g is
conjugate to an element in MA◦

+, which is a subset of

S := {cb | c ∈ K, b ∈ A+, cb = bc}.
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In this section, we first establish a result concerning the asymptotic
behavior of {k(gi)}i∈N for those g ∈ G conjugate to an element of S
(such a g has u(g) = 1 in the CMJD of g). Then we describe the precise
asymptotic behavior of {k(gi)}i∈N, {a(gi)}i∈N, and {n(gi)}i∈N under the
assumption that b(g) is regular.

Lemma 4.2. Let g ∈ G and let {gi}i∈N be the Iwasawa iteration of g.
The Iwasawa decompositions of {gi}i∈N can be described in terms of
the Iwasawa decompositions of {gi}i∈N as follows:

k(gi) = k(g1)k(g2) · · · k(gi),(4)

a(gi)n(gi) = a(gi)n(gi)a(gi−1)n(gi−1) · · · a(g1)n(g1).(5)

Conversely, the Iwasawa decompositions of {gi}i∈N can be described in
terms of the Iwasawa decompositions of {gi}i∈N as follows:

k(gi) = k(gi−1)−1 k(gi),(6)

a(gi) = a(gi) a(gi−1)−1,(7)

n(gi) = a(gi−1) n(gi) n(gi−1)−1 a(gi−1)−1.(8)

Moreover, gi is conjugate to g by

(9) gi = k(gi−1)−1 g k(gi−1) = a(gi−1) n(gi−1) g n(gi−1)−1 a(gi−1)−1.

Proof. First, we prove (4) and (5) by induction. Each equation holds
when i = 1. Assume that both equations hold for i = t − 1 and all
g ∈ G. We have

k(g1)k(g2) · · · k(gt) ∈ K, and a(gt)n(gt) · · · a(g2)n(g2)a(g1)n(g1) ∈ AN

since A normalizes N . Applying the induction hypothesis to g2, we get

k(g1)k(g2) · · · k(gt)a(gt)n(gt) · · · a(g2)n(g2)a(g1)n(g1)

= k(g1)g
t−1
2 a(g1)n(g1)

= k(g1) [a(g1)n(g1)k(g1)]
t−1 a(g1)n(g1)

= [k(g1)a(g1)n(g1)]
t = gt.

So (4) and (5) hold for i = t and hence for all i ∈ N.
Next, we prove (6), (7), and (8). Clearly (4) implies (6). Because A

normalizes N , (5) gives

a(gi) = a(gi)a(gi−1) · · · a(g1),

so (7) holds. Then by (5) and (7),

n(gi) = a(gi)
−1 a(gi)n(gi) [a(gi−1)n(gi−1)]−1

= a(gi−1)n(gi)n(gi−1)−1a(gi−1)−1,

so (8) holds.
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Finally, by (6), (7), and (8),

gi = k(gi)a(gi)n(gi)

= k(gi−1)−1k(gi)a(gi)n(gi)n(gi−1)−1a(gi−1)−1

= k(gi−1)−1gin(gi−1)−1a(gi−1)−1

= k(gi−1)−1gk(gi−1)

= a(gi−1) n(gi−1) g n(gi−1)−1 a(gi−1)−1,

so (9) holds. ¤

Let Σ+ denote the set of positive roots, and Σ− = −Σ+ denote the
set of negative roots. Then

a+ = {H ∈ a | α(H) ≥ 0 for all α ∈ Σ+},
n− =

∑

α∈Σ−
gα,

where gα ⊂ g is the root space of α. For H ∈ a+, put

n0
H :=

∑

α∈P 0
H

gα where P 0
H := {α ∈ Σ− | α(H) = 0};

nH :=
∑

α∈PH

gα where PH := {α ∈ Σ− | α(H) < 0}.

Then the algebra n− decomposes as a direct sum n− = n0
H⊕nH . Denote

by

π0
H : n− → n0

H

the projection onto the first summand. Note that when expH ∈ A+ is
regular, we have P 0

H = ∅, n0
H = 0, and π0

H maps n− to 0.

Lemma 4.3. Let b ∈ A+ and ` ∈ N−. Denote H := log b ∈ a+ and
L := log ` ∈ n−. Then

lim
i→∞

bi`b−i = exp π0
H(L) ∈ N−.

In particular, if b is regular, then lim
i→∞

bi`b−i = 1 ([4, p. 278]).

Proof. Fix i > 0. Using [8, (1.90), (1.94)] we get

bi`b−i = exp[Ad (bi)(L)] = exp[ead (iH)(L)] = exp Li,

where Li := ead (iH)(L). For any root α and Lα ∈ gα, we have

ad (iH)(Lα) = [iH, Lα] = iα(H)Lα.
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So

ead (iH)(Lα) =
∞∑

j=0

[ad (iH)]j

j!
(Lα) =

∞∑
j=0

[iα(H)]j

j!
Lα = eiα(H)Lα.

Since L ∈ n−, we have L =
∑

α∈Σ−
Lα, with Lα ∈ gα for each α. So

Li = ead (iH)(L) =
∑

α∈Σ−
eiα(H)Lα.

Since α(H) < 0 for all α ∈ Σ− with α(H) 6= 0, it follows that

lim
i→∞

bi`b−i = lim
i→∞

exp Li = exp lim
i→∞

Li = exp π0
H(L)

as desired. ¤
Lemma 4.4. Let {xi}i∈N and {yi}i∈N be two sequences in G, such that
lim
i→∞

xi = 1 and {Ad (yi)}i∈N is in a compact subset of Ad (G). Then

lim
i→∞

yixiy
−1
i = 1.

Proof. The exponential map exp : g → G is a local diffeomorphism.
Therefore, since limi→∞ xi = 1, there exist N ∈ Z+ and Xi ∈ g (i > N),
such that xi = exp Xi for i > N , and lim

i→∞
Xi = 0. Then yixiy

−1
i =

exp[Ad (yi)(Xi)] for i > N .
Suppose to the contrary that limi→∞ yixiy

−1
i 6= 1. Then

lim
i→∞

Ad (yi)(Xi) 6= 0,

so there exist an open neighborhood U of 0 ∈ g and a subsequence
{ti}i∈N of N, such that ti > N and Ad (yti)(Xti) /∈ U for all i ∈ N.
However, by assumption {Ad (yti)}i∈N is in a compact subset of Ad (G).
So there exist a subsequence {si}i∈N of {ti}i∈N and y ∈ G such that
limi→∞ Ad (ysi

) = Ad (y). This implies that limi→∞ Ad (ysi
)(Xsi

) =
Ad (y)(0) = 0, which contradicts that Ad (ysi

)(Xsi
) /∈ U for all i.

Therefore, limi→∞ yixiy
−1
i = 1. ¤

The following two main theorems present the convergence patterns
of k(gi), a(gi), and n(gi) for some special g ∈ G.

Theorem 4.5. Let g ∈ G and assume that ygy−1 = cb for some y ∈ G,
c ∈ K, b ∈ A+, and such that cb = bc. Suppose that y has a Bruhat
decomposition

y = n−msman ∈ N−msMAN.

Let n−0 := exp π0
H(L) where H := log b ∈ a+ and L := log n− ∈ n−.

Put

(10) c̃s := (n−0 msm)−1c(n−0 msm).
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Then there exists a sequence {di}i∈N in the set ANc̃sAN ∩K such that

lim
i→∞

k(gi)d
−1
i = 1.

Proof. Let

(11) y−1n−0 msm = k̄ān̄ and ān̄c̃i
s = kiaini

be the Iwasawa decompositions of the indicated elements. For i ∈ N
define

(12) xi := k−1
i ān̄(n−0 msm)−1ci(bin−b−in−0

−1
)c−i(n−0 msm)n̄−1ā−1ki,

and let
xi = k̂iâin̂i

be the Iwasawa decomposition of xi. Put

(13) bs := m−1m−1
s bmsm = m−1

s bms = s−1 · b ∈ A.

Then the components of the Iwasawa decomposition of gi are

k(gi) = k̄kik̂i ∈ K,(14)

a(gi) = âiaib
i
sa ∈ A,(15)

n(gi) = a−1b−i
s a−1

i n̂iainib
i
san ∈ N.(16)

as can be verified by a straightforward computation to see that the
product of the indicated elements is gi.

By (6),

k(gi) = k̂−1
i−1k

−1
i−1kik̂i.

Now lim
i→∞

bin−b−in−0
−1

= 1 by Lemma 4.3, and since Ad (ci) and Ad (k−1
i )

are in the compact set Ad K, it follows from (12) and Lemma 4.4 that
lim
i→∞

xi = 1. In turn,

(17) lim
i→∞

k̂i = lim
i→∞

âi = lim
i→∞

n̂i = 1

since the multiplication map

K × A×N → KAN = G

is a homeomorphism. Therefore, if

di := k−1
i−1ki = ai−1ni−1c̃sn

−1
i a−1

i ∈ ANc̃sAN ∩K,

then

lim
i→∞

k(gi)d
−1
i = lim

i→∞
k̂−1

i−1dik̂id
−1
i = ( lim

i→∞
k̂−1

i−1)( lim
i→∞

dik̂id
−1
i ) = 1

using Lemma 4.4 again. ¤
Remark 4.6.
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(1) The theorem can be interpreted as saying that, even though the
sequence k(gi) might not converge, it at least gets ever closer
to a sequence restricted to the set ANc̃sAN ∩ K. In turn,
gi = k(gi)a(gi)n(gi) gets ever closer to a sequence in the set
(ANc̃sAN ∩K)AN ⊆ ANc̃sAN .

(2) We can now recover the special case of Theorem 4.1 with G =
SLn(R).We may pick K = SO(n) and A+ ⊂ SLn(R) the set
of diagonal matrices of nonincreasing diagonal entries. Assume
the hypotheses of that theorem and put g = X. By assump-
tion, there exists y ∈ G such that ygy−1 = cb where c =
diag(Eθ1 , . . . , Eθm) ∈ K and b = diag(λ1Iγ1 , . . . , λmIγm) ∈ A+

(both block diagonals relative to the partition γ; b is not reg-
ular in general). Note that cb = bc. Also by assumption, we
have a decomposition y = LωU , with L ∈ N−, ωM ∈ W , and
U = DU ′ ∈ AN , so putting n− = L, ms = ω, m = 1, a = D,
and n = U ′, we have y = n−msman ∈ N−msMAN and the hy-
potheses of Theorem 4.5 are met. The conclusion is that k(gi)
gets ever closer to a sequence in the set ANc̃sAN . Now n−0 is
block diagonal (relative to the partition γ), so it follows that
c̃s is block diagonal as well, and so ANc̃sAN consists of up-
per triangular block matrices. Therefore, the lower triangular
blocks of the matrices Xi = gi tend to zero in agreement with
Theorem 4.1

(3) Theorem 4.5 can also be used to explain some of the patterns
found in [6, Section 3]. (The matrix ω in that section is not in
SL4(R) so the example does not satisfy our requirement that
G be semisimple as is, but one can arrange to have all of the
indicated matrices in SL4(R), without affecting the observed
patterns, by making the replacements Y → I−4 Y , L → I−4 LI−4 ,
ω → I−4 ω, and c → −c, where I−4 := diag(−1, 1, 1, 1). ) Con-
sider the situation (1) in [6, Section 3]. The argument above
applies here except that ms (= ω), and therefore c̃s, is no longer
block diagonal relative to γ = (2, 2). But at least the (4, 1)-
entry of c̃s is zero, and the same then applies to every matrix in
ANc̃sAN . This explains the observed pattern that the (4, 1)-
entries in the Iwasawa iterations approach zero. This argument
is valid for the cases (4) and (5) as well. Similarly, in case (2),
γ = (2, 1, 1), which implies that the (4, 1)-, (4, 2)-, and (4, 3)-
entries of c̃s are each zero and hence these entries of the Iwasawa
iterations must each approach zero. An argument similar to this
handles case (3) as well.
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The counterpart in the Lie group setting of [6, Theorem 5.1] is given
in the following result.

Theorem 4.7. Let the notation be as in Theorem 4.5 and suppose
that g ∈ G with b(g) regular. Then the components of the Iwasawa
decomposition of gi have the following asymptotic behaviors:

(1) lim
i→∞

k(gi) = cs ∈ M, where cs := (msm)−1c(msm),

(2) lim
i→∞

a(gi) = bs ∈ A, where bs := (msm)−1b(msm) = s−1 · b as in

(13),
(3) lim

i→∞

(
ci
sn(gi)c

−i
s

)
= b−1

s ān̄bscsn̄
−1ā−1c−1

s = b−1
s k̄−1gk̄c−1

s ∈ N , where

k̄, ā and n̄ are as in (11).

Proof. Since b(g) is regular, Proposition 3.2 shows that there is y ∈ G
such that ygy−1 = cb, where c ∈ M ⊂ K and b = b(g) ∈ A+. Thus
the assumption on g in Theorem 4.5 is satisfied. Moreover, n−0 = 1 by
Lemma 4.3. So in (10), c̃s = (msm)−1c(msm) = cs ∈ M . Since M
normalizes AN and A normalizes N ,

ANc̃sAN ∩K = csAN ∩K = {cs}
by the uniqueness of the Iwasawa decomposition. In Theorem 4.5, we
have di = cs and so lim

i→∞
k(gi) = cs.

The second decomposition in (11) shows that

kiaini = ci
sā(c−i

s n̄ci
s),

so ai = ā and ni = c−i
s n̄ci

s. By (7), (15), and (17),

a(gi) = a(gi)a(gi−1)−1 = âiâ
−1
i−1aia

−1
i−1bs = âiâ

−1
i−1bs → bs as i →∞.

By (8), (15), (16), (17), and Lemma 4.4,

ci
sn(gi)c

−i
s = ci

sa(gi−1)n(gi)n(gi−1)−1a(gi−1)−1c−i
s

= ci
sb
−1
s ai−1a

−1
i âi−1n̂iainibsn

−1
i−1a

−1
i−1n̂

−1
i−1â

−1
i−1c

−i
s

→ b−1
s ān̄bscsn̄

−1ā−1c−1
s as i →∞.

Moreover, the first decomposition in (11) and n−0 = 1 imply that

b−1
s ān̄bscsn̄

−1ā−1c−1
s = b−1

s k̄−1gk̄c−1
s .

This completes the proof. ¤

Remark 4.8.

(1) When b(g) is regular, Theorem 4.7 shows that {k(gi)}i∈N and
{a(gi)}i∈N converge. It follows that {n(gi)}i∈N converges if and
only if {gi}i∈N converges.
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(2) When b(g) is not regular, {k(gi)}i∈N and {a(gi)}i∈N may not
converge. For example, let a > 0 and

g =

[
0 a
− 1

a
0

]
=

[
0 1
−1 0

] [
1
a

0
0 a

]
∈ SL2(R).

Then {a(gi)}i∈N diverges since

a(g2k−1) =

[
1
a

0
0 a

]
but a(g2k) =

[
a 0
0 1

a

]
.

Some other examples showing that {k(gi)}i∈N and {a(gi)}i∈N
can diverge when b(g) is not regular for g ∈ SLn(R) can be
found in [6, Section 3 and Section 4].

(3) In Theorem 4.7 the element y (depending on g) is not unique;
neither is s. However cs := (msm)−1c(msm) and bs := s−1 · b
as limits are independent of the choice of y or s according to
Theorem 4.7.

Example 4.9. We illustrate Theorems 4.5 and 4.7 with G the real
symplectic group ([15, p. 129], [17, p. 265]):

G := Spn(R) = {g ∈ SL2n(R) : gT Jng = Jn}, Jn =

(
0 In

−In 0

)
.

Using block multiplication, one finds that the elements of G are of
the form

(
A B
C D

)
, AT C = CT A, BT D = DT B, AT D − CT B = In

[15, p. 128].
The Iwasawa decomposition of Spn(R) is given by Spn(R) = KAN ,

where

K =
{(

C B
−B C

)
: C + iB ∈ U(n)

}
= O(2n) ∩ Spn(R),

A = {diag (a1, . . . , an, a
−1
1 , . . . , a−1

n ) : a1, . . . , an > 0},

N =
{(

C B
0 (C−1)T

)
: C unit upper triangular, CBT = BCT

}

[17, p. 285]. The centralizer M of A in K is the group of the diagonal
matrices in K, i.e., the group of matrices of the form diag (C, C), where
C = diag (±1,±1, . . . ,±1) (independent signs here and below). The
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normalizer M ′ of A in K is W ′M where W ′ is generated by

{Ek,n+k−En+k,k +
∑

i6=k,n+k

Eii : k = 1, . . . , n}

∪ {diag (C, C) : C is a permutation matrix}.
Note that W ′M/M ' W ′/(W ′ ∩M) is isomorphic to the Weyl group.
We have N− = NT = {nT : n ∈ N}.

Let g ∈ G and assume the hypotheses of Theorem 4.5, that is,
assume that ygy−1 = cb for some y ∈ Spn(R), c ∈ K and b =
diag (b1, . . . , bn, b

−1
1 , . . . , b−1

n ) ∈ A with bc = cb, and that y has Bruhat
decomposition y = n−msman ∈ N−msMAN .

Case 1. Suppose that b is regular, i.e., b ∈ A◦
+. Choosing A+, as

usual, to be the set of those matrices in A with first n diagonal entries
nonincreasing and ≥ 1, we have b1 > b2 > · · · > bn > 1. Since bc = cb,
it follows that c = diag (C, C) with C = diag (±1,±1, . . . ,±1).

According to Theorem 4.7,

(1) lim
i→∞

k(gi) = cs ∈ M, where cs := (msm)−1c(msm) is of the

form diag (C, C) with C = diag (±1,±1, . . . ,±1),
(2) lim

i→∞
a(gi) = bs ∈ A, where bs := (msm)−1b(msm) = m−1

s bms

is of the form diag (D,D−1) with D a diagonal matrix having
diagonal entries b±1

1 , b±1
2 , . . . , b±1

n in some order.

The diagonal entries of n(gi) are each 1, so it follows that the diagonal
entries of the sequence {gi} converge to the eigenvalues of g.

Case 2. Remove the assumption that b is regular. By analogy with
Theorem 4.1 (cf. Remark 4.6(2)), assume that the size of Eθi

is γi and

c = diag (Eθ1 , · · · , Eθm , E−θ1 , · · · , E−θm) ∈ K,

b = diag (λ1Iγ1 , . . . , λmIγm , λ−1
1 Iγ1 , . . . , λ

−1
m Iγm) ∈ A+

(both block diagonals relative to the partition γ). Note that b is not
regular if θi /∈ {0, 1π} for some i. Assume further that in the Bruhat
decomposition y = n−msman of y the matrix ms is a block permuta-
tion matrix relative to γ. Now n−0 is block diagonal relative to γ, so
c̃s := (n−0 msm)−1c(n−0 msm) is block diagonal as well. Thus ANc̃sAN
consists of matrices of the form(

C B
0 (C−1)T

)
,

where C is an upper triangular block matrix relative to γ and CBT =
BCT .



IWASAWA AND CHOLESKY ITERATIONS 15

Finally, we point out that since g ∈ Spn(R) ⊆ SL2n(R), we have
the Iwasawa decomposition (QR decomposition) g = k′a′n′ of g in
SL2n(R),where k′ is special orthogonal, a′ is positive diagonal, and n′

is unit upper triangular. But this is not the Iwasawa decomposition
g = kan of g in Spn(R). The QR iteration of g will only yield k′(gi) ∈
SO(2n) and n′(gi) unit upper triangular, but k′(gi) 6∈ K and n′(gi) 6∈ N
in general.

5. Cholesky iteration: the regular case

Let Y be a positive definite matrix. The Cholesky decomposition theo-
rem asserts that Y = R∗R where R is an upper triangular matrix with
positive diagonal entries. The spectral theorem asserts that there is
a unitary matrix U such that UY U−1 is diagonal with nonincreasing
diagonal entries.

These theorems have counterparts in the Lie group setting. Indeed,
by [4, p. 272-273], the map

(18) AN → P, an 7→ (an)∗an = n∗a2n,

is a homeomorphism, so each p ∈ P can be uniquely written as

p = n∗a2n, a ∈ A, n ∈ N.

We put
r(p) = an

and call p = r(p)∗r(p) the Cholesky decomposition of p ∈ P . It follows
that P is a subset of the open submanifold N−MAN of G and that the
indicated decomposition is the Bruhat decomposition of p. Moreover,
p = k−1bk for some k ∈ K where b ∈ A+ is uniquely determined by p,
as follows from the decomposition [8, p. 320]

p = Ad (K)a+.

In particular, every p ∈ P is hyperbolic.
The Cholesky iteration of p ∈ P is the sequence {p̃i}i∈N ⊂ P given

by

p̃1 := p,

p̃i := ri−1r
∗
i−1, i = 2, 3, . . . ,

where ri := r(p̃i). Since

p̃i := ri−1p̃i−1r
−1
i−1

we have

(19) p̃i := (ri−1 · · · r1)p(ri−1 · · · r1)
−1,
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so p̃i is conjugate to p for every i ∈ N.
The following provides a relationship between the Iwasawa iteration

{pi}i∈N of p and the Cholesky iteration {p̃i}i∈N of p(cf. [18, p. 546]).

Theorem 5.1. If p ∈ P , then pi+1 = p̃2i+1 for i = 0, 1, 2, · · ·.
Proof. We claim that

(20) pi = r∗1 · · · r∗i (ri · · · r1) = (ri · · · r1)
∗(ri · · · r1)

for all p ∈ P and all i ∈ N. Let p ∈ P . Since p1 = p̃1 = r∗1r1, the
equation holds for i = 1. Suppose the equation holds for i = t − 1.
Applying the induction hypothesis to p̃2, we get

pt = (r∗1r1)
t = r∗1(r1r

∗
1)

t−1r1 = r∗1p̃
t−1
2 r1 = r∗1r

∗
2 · · · r∗t (rt · · · r2r1),

so (20) holds for all i ∈ N.
Let p ∈ P and i ∈ N. We have

(21) p2i = (pi)∗pi =
[
a(pi)n(pi)

]∗
a(pi)n(pi),

where pi = k(pi)a(pi)n(pi) is the Iwasawa decomposition of pi. From
(20) and (21) and the uniqueness of the Cholesky decomposition,

r2i · · · r1 = a(pi)n(pi).

Finally, using (9) we get

pi+1 = a(pi) n(pi) p [a(pi) n(pi)]−1 = (r2i · · · r1) p (r2i · · · r1)
−1 = p̃2i+1,

the last equality from (19). ¤

Suppose that p ∈ P is conjugate to a regular element b ∈ A+. Then
ypy−1 = b for some y ∈ K. Moreover, by Lemma 3.1, y′py′−1 =
ypy−1 = b for some y′ ∈ G if and only if y′ = m′y ∈ K for some
m′ ∈ M .

Theorem 5.1 leads to the following asymptotic result about the Iwa-
sawa iteration of p and the Cholesky iteration of p.

Theorem 5.2. Let p ∈ P and assume that ypy−1 = b for some regular
b ∈ A+ and some y ∈ K. Let

y = n−msman ∈ N−msMAN

be a Bruhat decomposition of y. Then

lim
i→∞

p̃i = lim
i→∞

pi = s−1 · b.

Proof. Applying Theorem 4.7 with

g = p, c = 1, k̄ = y−1msm, and ā = n̄ = 1,
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we get
lim
i→∞

k(pi) = cs = 1, lim
i→∞

a(pi) = bs = s−1 · b,
and

lim
i→∞

n(pi) = lim
i→∞

(
ci−1
s n(pi) c−i+1

s

)
= b−1

s ān̄bscsn̄
−1ā−1c−1

s = 1.

Therefore, lim
i→∞

pi = s−1 · b.
Theorem 5.1 implies that lim

i→∞
p̃2i+1 = s−1 · b. Since (18) is a homeo-

morphism, the Cholesky iteration function

q := r∗r ∈ P 7−→ r ∈ AN 7−→ q̃1 := rr∗

is continuous. Therefore, lim
i→∞

p̃2i+2 converges to the Cholesky iteration

of s−1 · b, which is s−1 · b. We conclude that lim
i→∞

p̃i = s−1 · b. ¤

Let g ∈ G. Recall that g = k(g)a(g)n(g) denotes the Iwasawa de-
composition of g. The AN -sequence of g is the sequence {r̃i}i∈N given
by

r̃1 := a(g)n(g),

r̃i := a(r̃∗i−1)n(r̃∗i−1), i = 2, 3, . . .

For example, if G = SLn(R) and if X = QR ∈ G, then

r̃1 := R,

r̃i := R(r̃∗i−1), i = 2, 3, . . .

where R(r̃∗i−1) is the R-component of r̃∗i−1 in QR decomposition. Note
that the singular values of X, but not the eigenvalues, are preserved
during this iteration.

The AN -sequence {r̃i}i∈N of g ∈ G is related to the Cholesky itera-
tion {p̃i}i∈N of p := g∗g ∈ P as follows.

Theorem 5.3. Let {r̃i}i∈N be the AN -sequence of g ∈ G. Let {p̃i}i∈N
be the Cholesky iteration of p := g∗g ∈ P . Then p̃i = r̃∗i r̃i for all i ∈ N.

Proof. We have

p̃1 = g∗g = [k(g)a(g)n(g)]∗[k(g)a(g)n(g)] = [a(g)n(g)]∗[a(g)n(g)] = r̃∗1 r̃1,

so the equation holds for i = 1. Assuming the equation holds for
i = t− 1, we get

p̃t = r̃t−1r̃
∗
t−1 = [r̃∗t−1]

∗r̃∗t−1

= [k(r̃∗t−1)a(r̃∗t−1)n(r̃∗t−1)]
∗[k(r̃∗t−1)a(r̃∗t−1)n(r̃∗t−1)]

= [a(r̃∗t−1)n(r̃∗t−1)]
∗[a(r̃∗t−1)n(r̃∗t−1)]

= r̃∗t r̃t.
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Therefore, p̃i = r̃∗i r̃i for all i ∈ N. ¤
It is well known [8, p. 397] that

G = KA+K.

(When G = SLn(R), this gives the singular value decomposition of
X ∈ G.) We use this decomposition to obtain the asymptotic behavior
of the AN -sequence of g ∈ G.

Theorem 5.4. Let g ∈ G and write g = xa+y with x, y ∈ K, a+∈ A+,
and y ∈ N−msMAN . Then

lim
i→∞

r̃i = s−1 · a+,

where {r̃i}i∈N is the AN -sequence of g.

Proof. Let p := g∗g = y∗a2
+y = y−1a2

+y. By Theorems 5.3 and 5.2,

lim
i→∞

r̃∗i r̃i = lim
i→∞

p̃i = s−1 · a2
+ = (s−1 · a+)2.

Since Cholesky decomposition (18) is a homeomorphism, we get

lim
i→∞

r̃i = s−1 · a+

as desired. ¤
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